
#POWERCON2022
Git Version Control, Zero to Hero

Lorenzo Pieri
Senior Software Engineer

404answernotfound.public@gmail.com
@404answnotfound

lorenzopieri



Who am I?



• What is version control and what is git

• A little history of git

• Why would you use git version control (use case)

• So many commands! Let's discover them!

• Example

• Where to go from here



• Branch out to create new features without 
breaking current implementations

• Work alongside other people and collaborate on 
a unified codebase

• Merge our changes so that everyone on the 
team can take advantage of them

• Revisit our projects' history and logs without any 
hassle

@surface from Unsplash website



allow its users to 
track everything about the project 
they're working on

Praveen Thirumurugan from Unsplash website

The entire history of your project is 
at your reach! (if done properly)



Just like a time machine, for your projects

Delorean Rental from Unsplash website



Git is, to this day, the most known and used 
version control system used by quite a 
few Developers from anywhere in the world.

Companies now a days deem git to be a technical 
skill that should be in everyone's toolbelt.

Taken directly from git's website:
Git is a free and open source distributed version control system 
designed to handle everything from small to very large projects with 
speed and efficiency



Git development started in 2005 by Linus 
Torvalds and the Linux Development 
community.

But why was it needed? Version Control Systems 
already existed in the day. Not as git, but they 
existed.

The apparent reason relates to choices taken by 
the Linux Development community and the 
commercial company that developed BitKeeper, 
the VCS used by the Linux Development 
community up to that day.



The new system would serve goals that were not 
present in the previous VCS at that time.

They needed speed, simple design, parallel and 
non-linear development, fully distributed and 
able to handle large projects (such as the Linux 
Kernel)



git is, first and foremost, a technology that comes 
without bias for its usages.

Linux, MacOS or Windows. You can use it pretty 
much anywhere, you just need to install it and 
most of the times it might come already installed 
for you.

So, if you don't have a specific GUI for the job, all 
you need to do is open your OS command line 
interface (terminal, console, cmd or powershell)



But what about the distributed part that we 
were talking about a few slides back?

That's where, most of the times, service 
providers come into play and the most notable 
of them is Github, acquired by Microsoft in 
2018, bringing even more value to the famous 
phrasing

"Microsoft ❤ Linux"



Although quite the call on Github's subtitle, it is by 
large the most used hosting platform where open 
source (and closed source!) code lives and where 
thousands of thousands of Developers collaborate 
each day, creating new technology and sharing 
ideas.

If you want to follow along and you don't have an 
account yet:

- go to https://github.com/ and create one

- add me on Github so we can share experiences 
(search for 404answernotfound)

https://github.com/


Too good 
to be true



• Completely free for most of its usages and 
with generous free tiers for Premium usages

• User friendly to a multitude of usages, even 
for writing books!

• Trusted, well known and powerful system

Github is 
amazing



While developing this function 
you change parameters a few 
times to the point that you don't 
remember what you wrote 
previously. Sounds fair.



Let's go back a few commits (which 
are pretty much points in time of 
your code! Snapshots, if you prefer)



Well, Github (along with other 
similar services like Gitlab or 
Bitbucket) is a provider of remote 
origins

A remote origin is the place on the 
Internet where your "git stuff" lives



Well, your code (or configurations, 
or files, or pictures or books for that 
matter) is still stored locally on 
your computer until you create a 
remote repository for it so let's go 
for a little story to learn how to go 
from zero to hero with git!

Wanna follow along? :)



We started our journey, that's what! 
The command git init is the startup 
command to tell git (the software)
that the folder you are in has to 
become a git repository

A repository is a workspace (bunch 
of files and folders) that are 
"watched" by git and on init, git 
creates a .git folder with all the 
necessary files it needs to work!



local repository

but they are not 
added to the repository
the explicit way to tell git to look 
out for changes on those files





Oh wait, we created a new file in the 
meantime. Was it automatically 
added? It wasn't. We have to take care 
of that ourselves.



Nice. We added all the files that exist in 
our local folder and they are being 
watched by our git installation.

What's important to know here is: we told 
git to add all the files and folders to its 
watchlist.

What does it mean? Every change to files 
or folders will be captured by git.

To know which changes happened, just 
type git status



You built your scripts and configurations, 
created a local git repository and added 
files and folders to it.

You checkout out the status of your local 
repository to find out that two files need 
to be added again to the stage. What's 
the stage though?

The stage, or better Staging, is a space 
where git handles all your changes to files 
and folders. Changes that are staged can 
be committed!



Great job! You added your latest changes 
to your files and they now "live" in the 
staging zone.

Let's commit them by creating a commit.

A commit can be thought of as a point in 
time of your code, a history pin of your 
changes, a snapshot of your project.



Alright. You committed your changes, 
created points in time of your project and 
all that remains is to know how to move 
back and forth in the timeline of your 
project!

A commit creates a commit hash, which is 
the snapshot id we will be using to move 
around the timeline

We can see the commit hash, author, date 
of the commit and also the message of 
the commit



Going back and forth can be tiresome so 
we have a really simple command to go 
back to the last point in time we 
committed.

Depending on the name of your local 
repository branch (which usually starts 
with master but should be changed to 
main) you can do:

git checkout master or git checkout main



Changes were committed, points in time 
were seen so all that's left is to learn 
where's the distributed part in git!

To do that, we need to push our code, but 
push where?!

Well, we need to create a remote 
repository which will function as our 
remote origin. Lots of words, let's just 
create it!

Go to https://github.com/new

https://github.com/new


Add the necessary data, make it public or 
private (which is the access that your 
repository will have) and follow the 
instructions given on the next page

As you can see, we are also invited to 
change our primary branch to main

The important part there is also the 
remote add origin



Great job there, creating your remote 
origin to push your code online!

If you were to go to the url you just 
pushed your code to, you will find all your 
files and folders that were added, staged, 
commited and lastly pushed to your now 
remote repository on Github!

Congratulations! Your code is fully 
distributed!



Now that your code is distributed your 
friends can finally help you out with your 
scripts and configurations.

If any of them wanted to get your 
repository, they would have to clone it 
and if they pushed changes to that 
repository, you would have to pull the 
changes and merge them into your local 
repository. There might be a bit more to 
it, but let's leave it at this for now!



Collaborations can become messy, 
everyone should work on their own 
feature branch and that's exactly what we 
should do!

To keep our code clean and less error 
prone, especially when more people are 
working on it, it's good habit to create 
branches based on utility (feature, bugfix, 
hotfix, release)



Sometimes you want to bring changes 
from one branch to another, which could 
be the primary branch (remember main?)

In that case, you want to merge branches

git checkout main

git merge <name of branch>

If there are no conflicts between files and 
folders, merging will be automatic





Just create a new branch, make a 
commit, do what you think might 
be the best way to handle your 
files!



are so many more commands 
and features of git (and Github) left 
to learn!

You should check out:

- Github Actions

- Git Workflow

- Git the simple guide

- Oh shit git!

Bing, Google, Ecosia, DuckDuckGo. 
Pick your favorite Search Engine 
and look for great learning material!

https://rogerdudler.github.io/git-guide/
https://ohshitgit.com/


Where to find me

@404answnotfound

lorenzopieri

https://www.ictpower.it/

https://404answernotfound.eu/

@404answernotfound

404AnswerNotFound Podcast



Thank you

Lorenzo Pieri
Senior Software Engineer

404answernotfound.public@gmail.com
@404answnotfound

lorenzopieri


