ICT# POWER.~ m Microsoft

#POWERCONZ02/

Git Version Control, Zero to Hero

Lorenzo Pieri
Senior Software Engineer

404answernotfound.public@gmail.com y @404answnotfound

[]
IN lorenzopieri

const name = 'Lorenzo Piert'
let age = 32
let job = 'Sentor Software Engineer, currently @ AVR Tech'

let conference = '#POWERCON2022'

const sayHello = (conf: string) => {
console.log(Hello everyone from ${conf} @ ")

}

sayHello(conference) // 'Hello everyone from #POWERCON2022 & '

Agenda

« What is version control and what is git

« A little history of git

« Why would you use git version control (use case)
« SO0 many commands! Let's discover them!

» Example

» Where to go from here

What is version control

Version Control allows us to:

« Track and manage all the changes to our
codebase, but also our documentation

e Branch out to create new features without
breaking current implementations

« Work alongside other people and collaborate on
a unified codebase

* Merge our changes so that everyone on the Y ‘
team can take advantage of them , W \

 Revisit our projects' history and logs without any
hassle

=

@surface from Unsplash website

That's a lot of big words

Version Control is just a very useful
practice to allow its users to

track everything about the project
they're working on

Deleted a file months ago from
your project and now you need it
again? No problem.

The entire history of your project is
at your reach! (if done properly)

Praveen Thirumurugan from Unsplash website

What is qgit, really

Git i:s, to this day, the most known and used
version control system used by quite a
few Developers from anywhere in the world.

Companies now a days deem gi '
. | git to be a technical
skill that should be in everyone's toolbelt.

Taken directly from git's website:

Git (s a free and open source distributed '
designed to handle everythin version contro. system
Speod and efficiency ything from small to very large projects with

\ MG DU .f W ‘\j _‘Ji a4

feat. dynamic directive arguments fox
0{'@\(\ |dynarmic-ditective-ar QUrNES
perit improve scoped S\OLS CNRANGE
rest. lest cases for ~on[v-ond ¢
refactor. v-oind Ay NAMIC A
test fix lests, yesoWwe e\per C

sy, S ridale modiiet
feat. handle Aynarmic QW
“ . oo | S\oL- optirnizal\o
feat. Aynamic AN ectne

elactor. exiend Aom-

e, T checkphor eNe

rest: fixtests n\E|)

History of git

Git development started in 2005 by Linus
Torvalds and the Linux Development
community.

But why was it needed? Version Control Systems
already existed in the day. Not as git, but they
existed.

The apparent reason relates to choices taken by
the Linux Development community and the
commercial company that developed BitKeeper,
the VCS used by the Linux Development
community up to that day.

History of git

The new system would serve goals that were not
present in the previous VCS at that time.

They needed speed, simple design, parallel and
non-linear development, fully distributed and

able to handle large projects (such as the Linux
Kernel) ruensomgisancom

Thus git was born and it evolved and matured to
be simple, efficient and powerful enough to stand
any project and any codebase

Where to use git

git is, first and foremost, a technology that comes
without bias for its usages.

Linux, MacOS or Windows. You can use it pretty
much anywhere, you just need to install it and
most of the times it might come already installed
for you.

So, if you don't have a specific GUI for the job, all
you need to do is open your OS command line
interface (terminal, console, cmd or powershell)

Where to use git

But what about the distributed part that we
were talking about a few slides back?

That's where, most of the times, service) ’9
providers come into play and the most notable
of them is Github, acquired by Microsoft in

2018, bringing even more value to the famous

phrasing

"Microsoft ¥ Linux"

Github, where the world builds
software

Although quite the call on Github's subtitle, it is by
large the most used hosting platform where open
source (and closed source!) code lives and where
thousands of thousands of Developers collaborate

each day, creating new technology and sharing
ideas.

If you want to follow along and you don't have an
account yet:

- go to https://github.com/ and create one

- add me on Github so we can share experiences
(search for 404answernotfound)

https://github.com/

Github is for everyone!

O powershell Pull requests Issues Marketplace Explore

Repositories 54,624 repository results
Code
e PowerShell for every system!

Issues

One quick search for just

! powe rS h el I ! a n d | O O k at t h a t ! Marketplace Microsoft Azure PowerShell

Users

PowerShell functions and scripts (Azure, Ac

Languages

Useful PowerShell scripts

Too good
to be true

PowerShell Obfuscator

Github is for everyone!

.
[
: : _qql E fiyn
But that's not everything there is , ,
to Github! Github is
amazing

« Completely free for most of its usages and
with generous free tiers for Premium usages

« User friendly to a multitude of usages, even
for writing books!

* Trusted, well known and powerful system

So, what's in it for me?

. function Update-State ($state, $config, $action, $key)
Consider for a moment that you are |

. . . switch ($action)
in the midst of developing a { R
. 1 'AddChar' {Add-Char $state $config $key.KeyChar}
POWGrShe” SC.rlpt that S gpnna Save '"ForwardChar' {Move-ForwardChar $state}
you from ted|ousl repet|t|ve tasks 'BackwardChar' {Move-BackwardChar $state}

'BeginningOfLine’ {Move-Beginning0fLine $state}

"EndOfLine’ {Move-EndOfLine $state}

T 1 1 1 'DeleteBackwardChar' {Remove-BackwardChar $state}
Whlle deve|0plng th|S funCtlon 'DeleteForwardChar’ {Remove-ForwardChar $state}
you Change parameters a feW '"KillBeginningOfLine' {Remove-HeadlLine $state}

. h . h d I '"Ki1lEndOfLine' {Remove-TailLine $state}
times to the p0|nt that yOU ont 'RotateMatcher!’ {Select-Matcher $state}

remember What yOU WI’Ote 'ToggleCaseSensitive' {Switch-CaseSensitive $state}

] . 'TogglelnvertFilter' {Switch-InvertFilter $state}
previously. Sounds fair.
default {}

}
Problem is: it was working —_ S

with previous parameters, ¢)
now it's not.

Example taken from Powershell Poco repository

Broken script, what now?

Lucky you, you already started
using git and Github to store your
scripts and history of them!

Let's go back a few commits (which
are pretty much points in time of
your code! Snapshots, if you prefer)

git checkout a45a2l1f

function Update-State (
$state,
$config,
$action,
$key,
$prevParam,
$whatMadeItWorkBeforeParam
) {

switch ($action)

{

"AddChar'

ginning0
"EndOfLine’
‘DeleteBac

'‘DeleteFor Char'
‘KillBeginningOfLine'
'KillEndOfL1ine'
‘RotateMatcher’

‘Tog eSensitive'
‘ToggleInvertFilter'

default {}
}

$state
1

{Add-Char $state $config $
{Move-ForwardChar $state}
{Move-BackwardChar $state}
{Move-Beginning0fLine $sta
{Move-EndOfLine $state}
{Remove-BackwardChar $stat
{Remove-ForwardChar $state
{Remove-HeadlLine $state}
{Remove-TailLine $state}
{Select-Matcher $state}
{Switch-CaseSensitive $sta
{Switch-InvertFilter $stat

Example taken and modified

from Powershell Poco repository

Learning git, one step at a time

But where does all this code
resides? Github is on the Internet,
so it must be someone's server, a
cloud platform. Something like that,
right?

Well, Github (along with other
similar services like Gitlab or
Bitbucket) is a provider of remote
origins

A remote origin is the place on the
Internet where your "git stuff" lives

Learning git, one step at a time

So where's your code?

Well, your code (or configurations,
or files, or pictures or books for that
matter) is still stored locally on
your computer until you create a
remote repository for it so let's go
for a little story to learn how to go
from zero to hero with git!

Wanna follow along? :)

Learning git, Init
What did we just do?!

We started our journey, that's what!
The command git init is the startup
command to tell git (the software)
that the folder you are in has to
become a git repository

A repository is a workspace (bunch
of files and folders) that are
"watched" by git and on init, git
creates a .git folder with all the
necessary files it needs to work!

git intt

Learning git, add a file

So, we now have a local repository
but there is nothing to it. Our files
and folders (configurations and
scripts, in the example before) are
just as they were before. They are
inside a repository but they are not
added to the repository, which is
the explicit way to tell git to look
out for changes on those files

git add configurations

Let's tell git to add our
configurations to our local repository

Learning git, add all files and folders

Adding one file or folder at a time can
be quite tedious, can't it.

Let's just add all existing files and
folders from our local folder to our
local repository and just forget about
it

Learning git, watch for changes

We added everything we had on our
local folder to our local repository.
Great.

Oh wait, we created a new file in the
meantime. Was |t automatica”y glt add new_ver‘y_important_file.txt
added? It wasn't. We have to take care
of that ourselves.

Learning git, watch for changes

Nice. We added all the files that exist in
our local folder and they are being
watched by our git installation.

What's important to know here is: we told
git to add all the files and folders to its
watchlist.

git status

What does it mean? Every change to files
or folders will be captured by git.

To know which changes happened, just
type git status

Learning git, committing your changes

You built your scripts and configurations,
created a local git repository and added
files and folders to it.

You checkout out the status of your local
repository to find out that two files need
to be added again to the stage. What's
the stage though?

The stage, or better Staging, is a space
where git handles all your changes to files
and folders. Changes that are staged can
be committed!

Learning git, committing

Great job! You added your latest changes
to your files and they now "live" in the
staging zone.

Let's commit them by creating a commit.

A commit can be thought of as a point in
time of your code, a history pin of your
changes, a snapshot of your project.

git add *

git diff --staged

git commit -m “This is my first commit!"

Learning git, back in time

Alright. You committed your changes,
created points in time of your project and
all that remains is to know how to move
back and forth in the timeline of your
project!

A commit creates a commit hash, which is
the snapshot id we will be using to move
around the timeline

We can see the commit hash, author, date
of the commit and also the message of
the commit

git checkout a4b5a2lf

HEAD

1s now at a45a21f Initial commit

Learning git, and back to the present

Going back and forth can be tiresome so
we have a really simple command to go
back to the last point in time we
committed.

git log

Depending on the name of your local |
repository branch (which usually starts gt log --reflog
with master but should be changed to
main) you Can do: git checkout <your-branch>

git checkout master or git checkout main

If you tried to "git log" while back in time you probably noticed that all commits "after" that point
were gone. Add the —reflog flag to show all commits!

Learning git, pushing our changes

Changes were committed, points in time
were seen so all that's left is to learn
where's the distributed part in git!

To do that, we need to push our code, but
push where?!

Well, we need to create a remote
repository which will function as our
remote origin. Lots of words, let's just
create It!

Go to https://github.com/new

Create a new repository

Repository template

Mo template ~

Owner Repository name

(i 404answernotfound - [

Great repository names are short and memorable. Need inspiration? How about

Initialize this repository with:
Add a README file
Add .gitignore

.gitignore template: None ~

https://github.com/new

Learning git, remote repo

Add the necessary data, make it public or
private (which is the access that your
repository will have) and follow the
Instructions given on the next page

As you can see, we are also invited to
change our primary branch to main

The important part there is also the
remote add origin

Quick setup — if you've done this kind of thing before

Set up in Desktop or HTTPS S5H https://github. com/4@4answernotfound/powercon22.git

Get started by [s]g . We recommend every repository include a

...Or create a new repository on the command line

echo "# powercon22" == README.md
git init

git add README.md

git commit -m “first commit"
git branch -M main

git remote add origin https://github.com/484answernotfound/powercon22.git
git push -u origin main

...or push an existing repository from the command line

git remote add origin https://github.com/484answernotfound/powercon22.git
git branch -M main
git push -u origin main

...or import code from another repository
You can initialize this repository with code from a Subversion, Mercurial, or TFS project.

Import code

ProTip!

Learning git, remote repo

Great job there, creating your remote
origin to push your code online! ®

If you were to go to the url you just git branch -M main
pushed your code to, you will find all your
files and folders that were added, staged,

commited and lastly pushed to your now gtt remote add origin . .
. . ttps: it . 404 t .g1
remote repOS|tory on GlthUbl ps://github.com/ answernotfound/powercon gl

git push -u origin main

Congratulations! Your code is fully
distributed!

Learning git, collaborations

Now that your code is distributed your
friends can finally help you out with your
scripts and configurations. °

|f any of them wanted to get your git clone https://github.com/<username>/<reposito
repository, they would have to clone it
and if they pushed changes to that
repository, you would have to pull the
changes and merge them into your local
repository. There might be a bit more to
it, but let's leave it at this for now!

Learning git, branching

Collaborations can become messy,
everyone should work on their own

feature branch and that's exactly what we
should do!

To keep our code clean and less error
prone, especially when more people are
working on it, it's good habit to create
branches based on utility (feature, bugfix,
hotfix, release)

git branch feature/new-configuration-files

git checkout feature/new-configuration-files

Learning git, merging

Sometimes you want to bring changes
from one branch to another, which could
be the primary branch (remember main?)

In that case, you want to merge branches

git checkout main

git checkout main
git merge <name of branch> git merge feature/new-configuration-files

If there are no conflicts between files and
folders, merging will be automatic

Example use case

This workflow highly depends on
your choices or your team's choices
but it can be made simpler or more
detailed! You choose!

init
remote add origin <url>
branch -m main

add *
commit -m "initial commit"

add *
commit -m "added config files"

push -u origin main

pull

checkout -b "feature/new-feature"

add *

commit -m "sending feature branch to remote"
push -u origin feature/new-feature

checkout main
merge feature/new-feature

checkout matin
pull

No more final-final-reallyfinal files

Now that you know quite a bit of
git you can finally say goodbye to
weird file naming!

Just create a new branch, make a
commit, do what you think might
be the best way to handle your
files!

Where to go from here

There are so many more commands

and features of git (and Github) left
to learn!

You should check out:
- Github Actions

- Git Workflow

- Git the simple guide
- Oh shit git!

Bing, Google, Ecosia, DuckDuckGo.
Pick your favorite Search Engine
and look for great learning material!

https://rogerdudler.github.io/git-guide/
https://ohshitgit.com/

ICT# POWER.~ m Microsoft

Where to find me

ICTPower blog https://www.ictpower.it/
My personal blog https://404answernotfound.eu/

Medium @404answernotfound
Spotify 404AnswerNotFound Podcast

Y @404answnotfound

IN lorenzopieri

ICT# POWER.~ m Microsoft

Thank you

Lorenzo Pieri
Senior Software Engineer

404answernotfound.public@gmail.com y @404answnotfound

IN lorenzopieri

